Acta Crystallographica Section C

## Crystal Structure

Communications
ISSN 0108-2701

## 4-Bromo-2-\{[4-(3-mesityl-3-methyl-cyclobutyl)thiazol-2-yl]hydrazonomethyl\}phenol, with $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$, $\mathbf{C}-\mathbf{H} \cdots \pi$ and $\pi-\pi$ interactions

Mustafa Serkan Soylu, ${ }^{\text {a* }}$ Nezihe Çalısskan, ${ }^{\text {a }}$ Alaaddin Cukurovali, ${ }^{\text {b }}$ Ibrahim YıImaz ${ }^{\text {b }}$ and Orhan Büyükgüngör ${ }^{\text {a }}$<br>${ }^{\text {a }}$ Department of Physics, Arts and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ${ }^{\text {b }}$ Department of Chemistry, Arts and Sciences Faculty, Fırat University, 23119 Elazıĝ, Turkey<br>Correspondence e-mail: mssoylu@omu.edu.tr

Received 1 September 2005
Accepted 25 October 2005
Online 30 November 2005
The title compound, $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{BrN}_{3} \mathrm{OS}$, crystallizes in the triclinic space group $P \overline{1}$, with two independent molecules in the asymmetric unit. The molecules adopt an $E$ geometry about the azomethine $\mathrm{C}=\mathrm{N}$ double bond. The structure is stabilized as dimers by $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonding. $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions are also effective in the crystal packing.

## Comment

Hydrazine is a highly reactive base and reducing agent. Its primary uses are as a high-energy rocket propellant, as a reactant in military fuel cells, in nickel plating, in the polymerization of urethane, for removal of halogens from wastewater, as an oxygen scavenger in boiler feed water to inhibit
corrosion and in photographic development (Von Burg \& Stout, 1991). Hydrazine was historically used experimentally as a therapeutic agent in the treatment of tuberculosis, sickle cell anemia and non-specific chronic illnesses (Von Burg \& Stout, 1991; Gold, 1987). Moreover, hydrazones are frequently more efficient than oximes in this reaction, since the greater molecular weight of hydrazones causes a lower solubility in most solvents, and they can, therefore, often be more easily isolated and recrystallized. Hydrazones have been widely studied as chelating ligands for the spectrophotometric and fluorimetric determination of trace metal ions (Katyal \& Dutt, 1975; Galiano-Roth \& Collum, 1988).

(I)

The title compound, (I), crystallizes in the triclinic space group $P \overline{1}$, with two independent molecules in the asymmetric unit. A view of the asymmetric unit with the atom-labeling scheme is shown in Fig. 1. The structure of (I) was initially identified by NMR and IR spectroscopy. The crystal structure determination of (I) was carried out in order to compare the double-bond geometry of this compound with those found in related compounds containing the thiazole moiety, such as 2-(\{4-[3-methyl-3-(2,4,6-trimethylphenyl)cyclobutyl]-3H-thia-zol-2-ylidene\}hydrazonomethyl)benzene-1,4-diol ethanol solvate (Yüksektepe et al., 2005), (II), and to obtain more detailed information on the structural conformation of the molecule, which may be of value in structure-activity analysis.

Figure 1
View of the dimer formed in the crystal structure of (I). Displacement ellipsoids are drawn at the $50 \%$ probability level and the atom-numbering scheme is given. Hydrogen bonds are shown as dashed lines.

The molecules of (I) adopt an $E$ geometry about the azomethine $\mathrm{C}=\mathrm{N}$ double bond, with an $\mathrm{N} 2-\mathrm{N} 3=\mathrm{C} 18-\mathrm{C} 19$ torsion angle of 175.5 (3) ${ }^{\circ}$ in molecule $A$ and 177.7 (2) ${ }^{\circ}$ in molecule $B$ (Fig. 1). The skeleton of the molecules (except for the mesityl and methylcyclobutane moieties) deviates significantly from planarity. The r.m.s. deviations from the planes passing through all non-H atoms for the 3-bromo, 5-hydroxybenzene, thiazole and hydrazine moieties are 0.1492 (for molecule $A$ ) and $0.1072 \AA$ (for molecule $B$ ). The dihedral angles between the 3-bromo-5-hydroxybenzene plane $A$ (C19-C24), the thiazole plane $B(\mathrm{~N} 1 / \mathrm{C} 15 / \mathrm{C} 16 / \mathrm{S} 1 / \mathrm{C} 17)$ and the mesityl plane $C(\mathrm{C} 5-\mathrm{C} 10)$ are $17.47(11)$ and $13.21(9)^{\circ}(A / B)$, $13.00(15)$ and $5.36(18)^{\circ}(A / C)$, and $4.75(14)$ and $8.09(15)^{\circ}$ $(B / C)$, respectively, for molecules $A$ and $B$. In the thiazole ring, the $\mathrm{S} 1-\mathrm{C} 16$ and $\mathrm{S} 1-\mathrm{C} 17$ bond lengths (Table 1) are shorter than the accepted value for an $\mathrm{S}-\mathrm{Csp}{ }^{2}$ single bond (1.76 Å; Allen, 1984).

In the cyclobutane ring, the $\mathrm{C} 4 / \mathrm{C} 1 / \mathrm{C} 2$ plane forms dihedral angles of $26.57(3)^{\circ}$ (molecule $A$ ) and 29.55 (2) ${ }^{\circ}$ (molecule $B$ ) with the $\mathrm{C} 2 / \mathrm{C} 3 / \mathrm{C} 4$ plane. Literature values for the puckering of the cyclobutane ring are 23.5 (Swenson et al., 1997), 29.03 (13) (Yüksektepe et al., 2004) and 26.8 (2) ${ }^{\circ}$ for (II). These values are comparable to the reported values for (I).

An interesting feature was found in the crystal packing. While electron delocalization occurs along the hydrazine


Figure 2
A partial packing diagram for (I), showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions as broken lines. $C g 1$ is the centroid of the $\mathrm{C} 5 A-\mathrm{C} 10 A$ ring. H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (i) $-x,-y+2,-z+1$.]


A partial packing diagram for (I), showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\pi-\pi$ interactions as broken lines. $C g 2$ is the centroid of the C19B-C24B ring. H atoms not involved in hydrogen bonding have been omitted. [Symmetry code: (ii) $-x,-y+1,-z$.]
moiety in molecule $A$ and in (II), the H atom is transferred to atom $\mathrm{N} 2 B$ of the hydrazine group from atom $\mathrm{N} 1 B$ of the thiazole moiety in molecule $B$. In consequence of this H -atom migration, the independent molecules in the asymmetric unit are linked by strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds into a dimer in the $R_{2}^{2}(8)$ formation (Bernstein et al., 1995) (Figs. 2 and 3, and Table 2). A similar dimeric assembly has not been reported before for related structures. The $\mathrm{C} 17 A-\mathrm{N} 1 A$ and $\mathrm{C} 15 A-\mathrm{N} 1 A$ bonds [1.339 (4) and 1.394 (4) A , respectively] are longer than the corresponding bonds of molecule $B$ [1.318 (4) and 1.387 (4) Å]. The $\mathrm{N} 2 B-\mathrm{C} 17 B$ bond [1.348 (4) $\AA$ ] is also longer than the $\mathrm{N} 2 A-\mathrm{C} 17 A$ bond [1.327 (4) A]. Intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are also effective in the crystal packing (Table 2, and Figs. 2 and 3).

Of greater interest are the intermolecular $\pi$-ring interactions with the mesityl plane and methyl group (C12A$\mathrm{H} 12 C \cdots C g 1 ; C g 1$ is the centroid of the $\mathrm{C} 5 A-\mathrm{C} 10 A$ ring), which stabilize the molecules in the crystal. This $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction links the above-mentioned dimers again in a dimeric form, thus forming tetramers (Fig. 2 and Table 2). Additionally, $\pi-\pi$ interactions between the 3-bromo-5hydroxybenzene rings of molecule $B(C g 2$ is the centroid of the $\mathrm{C} 19 B$-C $24 B$ ring) is also effective in the molecular packing in the crystal structure [the distance between centroids is 3.814 (2) $\AA$ and the perpendicular distance is $3.41 \AA$; Fig. 3]. Propagation of the $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\pi-\pi$ interactions by inversion thus links the $R_{2}^{2}(8)$ dimers into a chain of these rings parallel to the [011] direction.

## Experimental

To an alcoholic suspension of 1-(5-bromo-2-hydroxybenzylidene)thiosemicarbazide $(1.3707 \mathrm{~g}, 5 \mathrm{mmol})$, a solution of 3-(2-chloro-1-oxoethyl)-1-mesityl-1-methylcyclobutane $(1.3225 \mathrm{~g}, \quad 5 \mathrm{mmol})$ in absolute ethanol ( 20 ml ) was added dropwise at $c a 323-328 \mathrm{~K}$ with continuous stirring. After the addition of the $\alpha$-haloketone, the temperature was kept at $323-328 \mathrm{~K}$ for a further 2 h . The solution was cooled to room temperature and then made alkaline with an aqueous solution of $\mathrm{NH}_{3}(5 \%)$; a light-yellow precipitate separated. The precipitate was filtered off, washed with an aqueous $\mathrm{NH}_{3}$ solution several times and dried in air. Single crystals suitable for crystal structure determination were obtained by slow evaporation of an ethanol solution (yield $87 \%$, m.p. 503 K ). IR $\left(\mathrm{cm}^{-1}\right): 3285 v(\mathrm{O}-\mathrm{H})$, $1165 v(\mathrm{C}-\mathrm{O}), 1625 v(\mathrm{C}=\mathrm{N}$ thiazole $), 1600 \nu(\mathrm{C}=\mathrm{N}$ azomethine $)$, $3131 v(\mathrm{~N}-\mathrm{H}), 655 v(\mathrm{C}-\mathrm{S}-\mathrm{C}$ thiazole $) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.49(s$, $3 \mathrm{H},-\mathrm{CH}_{3}$ on cyclobutane $), 2.14\left(s, 6 \mathrm{H}, o-\mathrm{CH}_{3}\right), 2.39\left(s, 3 \mathrm{H}, p-\mathrm{CH}_{3}\right)$, $2.54\left(m, 4 \mathrm{H},-\mathrm{CH}_{2}-\right.$ cyclobutane $), 3.31(q, 1 \mathrm{H},>\mathrm{CH}-$ cyclobutane $)$, $5.96(s, 1 \mathrm{H}$, thiazole $), 6.7-7.4(m, 5 \mathrm{H}$, aromatic $), 8.02(s, 1 \mathrm{H}$, azomethine).

## Crystal data

$\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{BrN}_{3} \mathrm{OS}$
$M_{r}=484.45$
Triclinic, $P \overline{1}$
$a=8.3589$ (5) $\AA$
$b=11.9903$ (7) $\AA$
$c=24.1438$ (14) $\AA$
$\alpha=75.507(5)^{\circ}$
$\beta=86.063(5)^{\circ}$
$\gamma=77.418(5)^{\circ}$
$V=2286.3(2) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.407 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 24578 \\
& \quad \text { reflections } \\
& \theta=1.7-27.2^{\circ} \\
& \mu=1.91 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, light-yellow } \\
& 0.40 \times 0.31 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

Data collection
Stoe IPDS-II diffractometer $\omega$ scans
Absorption correction: integration
( $X$-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.396, T_{\text {max }}=0.877$
27215 measured reflections 8041 independent reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.099$
$S=0.99$
8041 reflections
547 parameters
H -atom parameters constrained
Table 1
Selected geometric parameters ( $\left(\AA,{ }^{\circ}\right)$.

|  | Molecule $A$ | Molecule $B$ |
| :--- | :---: | :---: |
| S1-C16 | $1.717(4)$ | $1.730(3)$ |
| S1-C17 | $1.729(3)$ | $1.730(3)$ |
| N1-C17 | $1.339(4)$ | $1.318(4)$ |
| N1-C15 | $1.394(4)$ | $1.387(4)$ |
| N2-C17 | $1.327(4)$ | $1.348(4)$ |
| N2-N3 | $1.386(3)$ | $1.277(4)$ |
| N3-C18 | $1.281(4)$ | $1.337(4)$ |
| C15-C16 | $1.331(4)$ | $1.458(4)$ |
| C18-C19 | $1.446(4)$ |  |
|  |  | $88.49(15)$ |
| C16-S1-C17 | $89.19(15)$ | $114.6(3)$ |
| C16-C15-N1 | $111.9(3)$ |  |
|  |  | $-179.3(3)$ |
| C17-N2-N3-C18 | $172.3(3)$ |  |

The H atoms on atoms $\mathrm{N} 1 A$ and $\mathrm{N} 2 B$ were located at the end of the refinement in a Fourier difference synthesis. Once located, they were refined as riding $(\mathrm{N}-\mathrm{H}=0.86 \AA)$. All other H atoms were placed in calculated positions and refined as riding, with $\mathrm{C}-$ H distances in the range $0.93-0.98 \AA$ and $\mathrm{O}-\mathrm{H}$ distances of $0.82 \AA$. The $U_{\text {iso }}(\mathrm{H})$ values were set at 1.2 or 1.5 times $U_{\text {eq }}$ of the parent atom.

Table 2
Hydrogen-bond geometry ( $\AA,{ }^{\circ}$ ).
$C g 1$ is the centroid of the $\mathrm{C} 5 A-\mathrm{C} 10 A$ ring.

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~N} 1 A-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{~N} 1 B$ | 0.86 | 2.17 | $2.979(3)$ | 158 |
| O1A-H1O $\cdots \mathrm{N} 3 A$ | 0.82 | 1.89 | $2.613(3)$ | 146 |
| $\mathrm{~N} 2 B-\mathrm{H} 2 \mathrm{~N} \cdots \mathrm{~N} 2 A$ | 0.86 | 2.21 | $2.880(4)$ | 134 |
| $\mathrm{O} 1 B-\mathrm{H} 2 \mathrm{O} \cdots \mathrm{N} 3 B$ | 0.82 | 1.91 | $2.635(3)$ | 146 |
| $\mathrm{C} 12 A-\mathrm{H} 12 C \cdots C 1^{\mathrm{i}}$ | 0.96 | 2.74 | $3.627(3)$ | 154 |

Symmetry code: (i) $-x,-y+2,-z+1$.

Data collection: $X$-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA (Stoe \& Cie, 2002); data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AV1259). Services for accessing these data are described at the back of the journal.

## References

Allen, F. H. (1984). Acta Cryst. B40, 64-72.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Galiano-Roth, A. \& Collum, D. B. (1988). J. Am. Chem. Soc. 110, 3546-3553.
Gold, J. (1987). Nutr. Cancer, 9, 59-66.
Katyal, M. \& Dutt, G. (1975). Talanta, 22, 151-166.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467.
Sheldrick, G. M. (1997) SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). $X$-AREA (Version 1.18) and $X$-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Swenson, D. C., Yamamoto, M. \& Burton, D. J. (1997). Acta Cryst. C53, $1445-$ 1447.

Von Burg, R. \& Stout, T. (1991). J. Appl. Toxicol. 11, 447-450.
Yüksektepe, Ç., Saraçoĝlu, H., Koca, M., Çukurovali, A. \& Çalışkan, N. (2004). Acta Cryst. C60, o509-o510.
Yüksektepe, Ç., Soylu, M. S., Saraçoĝlu, H., Yılmaz, I., Çukurovali, A. \& Çalıskan, N. (2005). Acta Cryst. E61, o1158-o1160.

